学术动态

位置: 首页 > 科学研究 > 学术动态 > 正文

学术报告三十三:郭经纬—The two-term Weyl formulas for planar disks and annuli

鸿博体育(集团)有限公司:2019-11-01 作者: 点击数:

报告鸿博体育(集团)有限公司:2019年11月6日(星期三)10:10-11:10

报告地点:翡翠湖校区科教楼B座1710

报告:郭经纬

工作单位:中国科学技术大学数学科学学院

报告人简介:

郭经纬,中国科技大学特任研究员,主要从事于基础数学的分析学方向的研究。近年来关注的重点是将分析学的方法应用于数论和谱几何的问题的研究中。尤其在格点问题和Weyl定律的渐近展开问题里获得了一系列目前的最佳结果。

报告简介:

One of the most important objects in spectral geometry is the eigenvalue counting function, say, of the Dirichlet Laplacian associated with planar domains.

The simplest examples of domains are squares, disks, annuli, etc. It is well-known that for each of these domains its eigenvalue counting function has an asymptotics containing two main terms and a remainder of size $o(\mu)$. (Such an asymptotics is usually called Weyl's law.) To improve the estimate of the remainder term had been one of the most attractive problems in spectral geometry for decades.

In this talk I will first introduce background and the work by Y. Colin de Verdiere on the two-term Weyl formula for planar disks. Then I will explain how to improve his result by using tools from analysis and analytic number theory and how to extend it from disks to annuli. This is our recent work joint with Wolfgang Mueller, Weiwei Wang and Zuoqin Wang.

上一篇:学术报告三十五:王熙曜—金融领域就业情况介绍

下一篇:学术报告三十二:邓少强—从欧氏几何到黎曼几何